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Abstract

In this talk we review the work in [1, 2, 3] where we have studied
the applicability of the color-kinematics duality to the scattering of two
distinguishable scalar matter particles with one gluon emission in QCD,
or one graviton emission in Einstein gravity. We have shown that the
duality works well in the Regge limit under two different extensions of the
gauge theory: the introduction of a new scalar contact interaction and
the relaxation of the distinguishability of the scalars. Both modifications
correspond to theories obtained by dimensional reduction from higher-
dimensional pure gauge theories..

1 Introduction

The study of the relation between gravity and gauge theories both in the strong-
weak aspect of AdS/CFT [4] and in a weak-weak set up [5] is an active field
of research at present. Early results were the Kawai-Lewellen-Tye (KLT) re-
lations [6] or the further studies in [7] which strengthened the idea that, at
the level of scattering amplitudes, gravity should in some sense correspond to
the square of gauge theory. More recently, Bern, Carrasco and one of the cur-
rent authors (BCJ), showed that there exists an underlying duality between
color and kinematics in gauge theory [8] which generates gravity amplitudes
by replacing the color factors in the gauge-theory side with kinematic numera-
tor functions depending on particle momenta and states, giving a double-copy
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representation of gravity amplitudes. This is expected to also work at loop
level [9, 10, 12, 13, 14, 15].

The duality is known to work at tree level in pure (super)-Yang-Mills theories
in various dimensions [8, 10, 11]. The treatment of general matter states and
interactions in the color-kinematics duality has not been understood yet. In [2]
three of us studied the duality in the context of inelastic amplitudes involving
scalar particles in multi-Regge kinematics ([16, 17, 18]). A simple extension of
the BCJ duality to the scattering of two scalar particles with gluon emission in
scalar QCD only correctly retrieves the square of two Lipatov’s QCD emission
vertices [19, 20, 21]. The terms responsible for the cancellation of simultaneous
divergences in overlapping channels [22, 23, 24, 25, 18, 1], as required by unitar-
ity [26] were not reproduced correctly. In [3] this problem was approached with
two different modifications: first, we considered the scattering of two distin-
guishable scalars in the adjoint representation in Yang-Mills theory introducing
a quartic matter self-coupling (characteristic of the bosonic sector of N = 2
supersymmetric Yang-Mills theory). Second, we repeated the calculations in [2]
with identical adjoint scalars. In both cases the duality reproduced the correct
gravitational amplitude in the Regge limit computed in [1].

2 Scalar matter and Color-kinematics duality

We focus on the scattering of two scalars with momenta p1, p2 producing two
scalars with momentua p3, p4 and a emitted gluon (in QCD) or graviton (in
gravity) with momentum p5. The gauge-theory amplitude is written as a sum
over 15 channels,

A5 = g3
15∑
i=1

cini
di

, (1)

where ci are the color factors:

c1 = fa5a3bf ba4cf ca2a1 , c2 = fa5a4bf ba3cf ca2a1 ,

c3 = fa2a1bf ba5cf ca3a4 , c4 = fa5a1bf ba2cf ca3a4 ,

c5 = fa5a2cf ca1bf ba3a4 , c6 = fa5a3cf ca1bf ba2a4 ,

c7 = fa5a4bf ba2cf ca3a1 , c8 = fa5a4cf ca1bf ba2a3 , (2)

c9 = fa5a3bf ba2cf ca4a1 , c10 = fa5a1bf ba3cf ca2a4 ,

c11 = fa5a2bf ba4cf ca3a1 , c12 = fa5a2bf ba3cf ca4a1 ,

c13 = fa5a1bf ba4cf ca2a3 , c14 = fa2a4bf ba5cf ca3a1 ,

c15 = fa2a3bf ba5cf ca4a1 ,

where fabc are structure constants and the denominators di =
∏
αi
sαi

corre-
spond to the product of the kinematic invariants associated with the internal
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lines in the corresponding Feynman diagram. The Jacobi identities of the struc-
ture constants make the color factors to satisfy nine independent identities that
we label as jα = 0 with

j1 ≡ c12 − c9 + c15, j2 ≡ c11 − c7 + c14, j3 ≡ −c4 + c5 + c3,

j4 ≡ c1 − c2 − c3, j5 ≡ −c10 + c6 − c14, j6 ≡ −c13 + c8 − c15, (3)

j7 ≡ c4 − c10 + c13, j8 ≡ c8 + c7 − c2, j9 ≡ c6 + c9 − c1.

The numerators ni obtained from the Feynman rules in general do not satisfy
the Jacobi-like identities ±ni ± nj ± nk = 0, corresponding to jα with ci → ni.
A generalized gauge transformation, adding zero to the original amplitude in
the form

A5 =

15∑
i=1

cini
di

+

9∑
α=1

γαjα =

15∑
i=1

cin
′
i

di
. (4)

The numerators n′i are obtained by collecting the coefficients of each color factor
ci and multiplying by corresponding denominator: n′i = di∂ciA5. The parame-

ters γα are chosen such that jα

∣∣∣
ci→n′

i

= 0. These new numerators are used to

construct the gravitational amplitude using the BCJ double-copy prescription

−iM =
(κ

2

)3 15∑
i=1

n′iñ
′
i

di
, (5)

where κ is the gravitational coupling constant. We express the momenta as

p3 = −p1 + k1, p4 = −p2 − k2, p5 = −k1 + k2, (6)

where kµ1 = α1p
µ
1 + β1p

µ
2 + kµ1,⊥ and kµ2 = α2p

µ
1 + β2p

µ
2 + kµ2,⊥, with ki,⊥ being

orthogonal to p1 and p2. In this way we have

pµ5 = (α2 − α1)pµ1 + (β2 − β1)pµ2 + kµ2,⊥ − k
µ
1,⊥. (7)

Multi-Regge kinematics is defined in terms of Sudakov parameters as 1� α1 �
α2 and 1� |β2| � |β1|. The gravitational amplitude then reads

−iM = −iAkkMµνεµν(p5), (8)

where εµν(p5) is the graviton polarization tensor and [1]

Mµν = (k1 + k2)µ⊥(k1 + k2)ν⊥ +Ak1
[
(k1 + k2)µ⊥p

ν
1 + pµ1 (k1 + k2)ν⊥

]
+ Ak2

[
(k1 + k2)µ⊥p

ν
2 + pµ2 (k1 + k2)ν⊥

]
+A12

(
pµ1p

ν
2 + pµ2p

ν
1

)
(9)

+ A11p
µ
1p
ν
1 +A22p

µ
2p
ν
2 .

The graviton emission effective vertex Mµν calculated by Lipatov in [23] and
by three of us more recently in [1] is

Mµν = ΩµΩν −N µN ν . (10)
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where the vertex for the coupling of two reggeized gluons and one on-shell is

Ωµ '
(
α1 −

2β1
β2

)
pµ +

(
β2 +

2α2

α1

)
qµ − (k1 + k2)µ⊥, (11)

and the term N µN ν removes simultaneous poles in α1 = 0 and β2 = 0 with

N µ ' −2i
√
β1α2

(
pµ

β2
+
qµ

α1

)
. (12)

In [2] three of us studied the scattering of two distinguishable scalars Φ
and Φ′ showing that the obtained color-kinematics solution only reproduces
the QCD-like part (ΩµΩν) in the gravity side. This problem with the incor-
rect N µN ν term was solved in [3] by embedding the Yang-Mills + 2 scalar
theory into the bosonic sector of N = 2 super-Yang-Mills theory (with the
scalars transforming in the adjoint representation and introducing the matter

self-coupling for the two scalars ∆L = g2

2 Tr
(

[Φ,Φ′]2
)

). This adds four more

diagrams without t-channel poles. Now the numerators are

n′1 = (p1 + p2)2
[
− (γ9 − γ4)(p3 + p5)2 − 2p3 · ε(p5)

]
,

n′2 = (p1 + p2)2
[
− (γ4 + γ8)(p4 + p5)2 + 2p4 · ε(p5)

]
,

n′3 = (γ3 − γ4)(p1 + p2)2(p3 + p4)2,

n′4 = (p3 + p4)2
[
(γ7 − γ3)(p1 + p5)2 + 2p1 · ε(p5)

]
,

n′5 = −(p3 + p4)2
[
− γ3(p2 + p5)2 + 2p2 · ε(p5)

]
,

n′6 = −(p3 + p5)2
[
− (γ5 + γ9)(p2 + p4)2 + (p2 − p4) · ε(p5)

]
− 2(p2 − p4) · (p1 − p3 − p5)[p3 · ε(p5)],

n′7 = −(p4 + p5)2
[
(γ2 − γ8)(p1 + p3)2 + (p3 − p1) · ε(p5)

]
− 2(p3 − p1) · (p2 − p4 − p5)[p3 · ε(p5)],

n′8 = (p2 + p3)2
[
(γ6 + γ8)(p4 + p5)2 + 2p4 · ε(p5)

]
, (13)

n′9 = −(p1 + p4)2
[
(γ1 − γ9)(p3 + p5)2 + 2p3 · ε(p5)

]
,

n′10 = −(p1 + p5)2
[
(γ5 + γ7)(p2 + p4)2 + (p2 − p4) · ε(p5)

]
− 2(p2 − p4) · (−p1 + p3 − p5)[p1 · ε(p5)],

n′11 = −(p2 + p5)2
[
− γ2(p1 + p3)2 + (p3 − p1) · ε(p5)

]
− 2(p3 − p1) · (−p2 + p4 − p5)[p2 · ε(p5)],

n′12 = (p1 + p4)2
[
γ1(p2 + p5)2 + 2p2 · ε(p5)

]
,

n′13 = −(p2 + p3)2
[
(γ6 − γ7)(p1 + p5)2 + 2p1 · ε(p5)

]
,
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n′14 = −(p2 − p4) · (p1 + p3 − p5)[(p3 − p1) · ε(p5)]

− (p3 − p1) · (p2 − p4)[(−p1 + p2 − p3 + p4) · ε(p5)]

+ γ2(p1 + p3)2(p2 + p4)2 − γ5(p1 + p3)2(p2 + p4)2,

n′15 = (γ1 − γ6)(p2 + p3)2(p1 + p4)2.

There are four independent γ variables which we take to be γ1,3,6,7 and write

γ2 =
(p2 + 2p3 + p4) · ε(p5)

sβ1
− γ1

1 + β2
β1

− γ3
−1 + α1 − α2 + β1 − β2

β1
,

γ4 =
2(p3 + p4) · ε(p5)

s
+ γ3(1− α1 + α2 − β1 + β2) + γ7(β1 − β2), (14)

γ5 =
(−p2 + p4) · ε(p5)

sα2
− γ3

1− α1 + α2 − β1 + β2
α2

+ γ6
1− α1

α2
− γ7

β1 − β2
α2

,

γ8 =
2(p2 + p3) · ε(p5)

s(α1 + β1)
− γ1

1 + β2
α1 + β1

+ γ6
1− α1

α1 + β1
− γ7

β1 − β2
α1 + β1

,

γ9 = −2(p2 + p3) · ε(p5)

s(α2 + β2)
+ γ1

1 + β2
α2 + β2

− γ6
1− α1

α2 + β2
.

Applying the BCJ prescription we construct the gravitational amplitude which
in multi-Regge kinematics limit has the coefficients

A11 ' α2
1 −

4α1β1
β2

+
4β2

1

β2
2

+
4α2β1
β2
2

+ . . . ,

A22 ' β2
2 +

4α2β1
α1

+
4α2β1
α2
1

+
4α2

2

α2
1

+ . . . ,

A12 ' α1β2 − 2β1 + 2α2 + . . . , (15)

Ak1 ' −α1 +
2β1
β2

+ . . . ,

Ak2 ' −β2 −
2α2

α1
+ . . . ,

which correctly reproduce the full form of Lipatov’s effective graviton emission
vertex.

A second method to avoid the problem found in [2] is to consider a single
adjoint scalar minimally coupled to a nonabelian gauge field and compute the
scattering amplitude with indistinguishable scalars. The number of Feynman
diagrams is increased and resolving the four-point vertices in terms of trivalent
ones we obtain the numerators

n1 = −(p3 + p5)2[(p2 − p1) · ε(p5)]− 2(p2 − p1) · (−p3 + p4 − p5)[p3 · ε(p5)],

n2 = −(p4 + p5)2[(p2 − p1) · ε(p5)]− 2(p2 − p1) · (p3 − p4 − p5)[p4 · ε(p5)],
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n3 = −(p2 − p1) · (p3 − p4)[(p1 + p2 − p3 − p4) · ε(p5)]

− (p3 − p4) · (−p1 − p2 + p5)[(p2 − p1) · ε(p5)]

− (p2 − p1) · (p3 + p4 − p5)[(p3 − p4) · ε(p5)],

n4 = −(p1 + p5)2[(p3 − p4) · ε(p5)]− 2(p3 − p4) · (−p1 + p2 − p5)[p1 · ε(p5)],

n5 = −(p2 + p5)2[(p3 − p1) · ε(p5)]− 2(p3 − p1) · (−p2 + p4 − p5)[p2 · ε(p5)],

n6 = −(p3 + p5)2[(p4 − p1) · ε(p5)]− 2(p2 − p1) · (−p3 + p4 − p5)[p3 · ε(p5)],

n7 = −(p4 + p5)2[(p3 − p1) · ε(p5)]− 2(p3 − p1) · (p2 − p4 − p5)[p4 · ε(p5)],(16)

n8 = −(p4 + p5)2[(p2 − p3) · ε(p5)]− 2(p2 − p3) · (p1 − p4 − p5)[p4 · ε(p5)],

n9 = −(p3 + p5)2[(p4 − p1) · ε(p5)]− 2(p4 − p1) · (p2 − p3 − p5)[p3 · ε(p5)],

n10 = −(p1 + p5)2[(p2 − p4) · ε(p5)]− 2(p2 − p4) · (−p1 + p3 − p5)[p1 · ε(p5)],

n11 = −(p2 + p5)2[(p3 − p1) · ε(p5)]− 2(p3 − p1) · (−p2 + p4 − p5)[p2 · ε(p5)],

n12 = −(p2 + p5)2[(p4 − p1) · ε(p5)]− 2(p4 − p1) · (−p2 + p3 − p5)[p2 · ε(p5)],

n13 = −(p1 + p5)2[(p2 − p3) · ε(p5)]− 2(p2 − p3) · (−p1 + p4 − p5)[p1 · ε(p5)],

n14 = −(p2 − p4) · (p1 + p3 − p5)[(p3 − p1) · ε(p5)]

− (p3 − p1) · (−p2 − p4 + p5)[(p2 − p4) · ε(p5)]

− (p3 − p1) · (p2 − p4)[(−p1 + p2 − p3 + p4) · ε(p5)],

n15 = −(p2 − p3) · (p4 − p1)[(−p1 + p2 + p3 − p4) · ε(p5)]

− (p4 − p1) · (−p2 − p3 + p5)[(p2 − p3) · ε(p5)]

− (p2 − p3) · (p1 + p4 − p5)[(p4 − p1) · ε(p5)].

It is very interesting to point out that these numerators obtained from the
Feynman rules directly satisfy the Jacobi-like identities and we do not have
to perform a generalized gauge transformation before constructing the gravi-
tational amplitude using the BCJ prescription. In the multi-Regge kinematics
limit we find the same coefficients as in Eq. (16) which again reproduce Lipatov’s
effective vertex.

3 Discussion and outlook

In this contribution we have summarized the work in [1, 2, 3] related to the use
of the color-kinematics duality to the scattering of two distinguishable scalar
matter particles with gluon emission, or graviton emission. In [2] it was shown
that in transferring the BCJ double-copy prescription to the scattering of min-
imally coupled distinguishable scalars an important part of the gravitational
amplitude in multi-Regge kinematics was not correctly reproduced.

In [3] we have studied two extensions of the theory for which the BCJ pre-
scription generates the correct the Regge limit of [23, 1]. In one of them a
contact interaction between the two scalar particles is introduced, while in the
other we give up the distinguishability of the scalars. For both cases we obtain
valid gravity amplitudes from the BCJ double-copy prescription in the Regge
limit.
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Both cases can be thought of as originating from the bosonic sector of D = 4
N = 2 super-Yang-Mills theory, keeping either both scalars, or only one scalar.
They can be interpreted as coming from subsectors of N = 4 super-Yang-Mills
theory, for which double-copy prescription is proven to give valid gravity tree-
level amplitudes [10]. An important observation is that the D = 4 Yang-Mills
+ scalar theories studied in [3] are via dimensional reduction directly related to
pure Yang-Mills theory in D = 6 and D = 5 dimensions, respectively. Indeed
the new interaction term can be obtained by dimensionally reducing D = 6
pure Yang-Mills to D = 4, where the gauge field along the extra two dimensions
are interpreted as two scalars, Φ ≡ A4, Φ′ ≡ A5. We find that the successful
application of color-kinematics duality in [3] stems from its validity in higher-
dimensional Yang-Mills theory and gravity [8, 9, 10, 12, 15] (other practical
examples of dimensional reduction can be found in [27]).

Nevertheless, the inclusion of general matter states and interactions in the
color-kinematics and double-copy formalism is still an open problem. In partic-
ular, it would be interesting to study how to relate tree amplitudes in Yang-Mills
theory with minimally-coupled fermions and scalars to that of Einstein gravity
with the same matter content. Embedding the gauge and gravity theories into
their respective higher-dimensional versions is probably the correct path to fol-
low. The results here discussed with the help of the multi-Regge limit are a first
step towards understanding this general matter case.
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